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Abstract. A systematic method is presented for processing the equations of motion of a singular
Lagrangian that, in principle, has all dynamical degrees of freedom together with the Lagrangian
constraints and a number of identities between the equations of motion. Then, using these
identities one can find the complete set of gauge transformations of the system. Different
types of Schwinger model are considered as examples and the related gauge transformations are
derived.

1. Introduction

Gauge invariance is one of the most fundamental concepts in modern theoretical physics.
In spite of its fame, however, the exact meaning of gauge invariance is not well defined.
For particle physicists, it means local phase transformation of matter fields followed by
appropriate transformation of gauge fields. However, gauge symmetry has some other
interpretations from a more general point of view. In some references it is defined as any
transformation involving arbitrary functions of time which maps solutions of the equations
of motion into each other [1, 2].

Another definition [3] which is as good, is that a gauge transformation (GT) is any
transformation, involving an arbitrary function of time, which does not change the action.
By this, we mean that i8g; is the GT of an arbitrary trajectory(s) then

S[g(®)] = S[q(t) + 5q@)]. 1)

In the special case thab(r) is the trajectory of the classical system, i.e. maKgg(¢)]
stationary, thenyo(z) + 3¢(¢) is also another stationary point of the action, provided we
adjustdq (¢) such that it vanishes at the endpoints. @) = qo(t) + 8¢ (¢) is also another
classical trajectory. By this definition a GT also has the property of mapping solution of
equations of motion into each other.

Given an arbitrary action, the following questions arise.

(1) Is there any gauge symmetry in the model?

(2) What are the exact forms of the GTs?

(3) How many dynamical, constraint and gauge degrees of freedom are there in the
system?

The gauge symmetry is often put, by hand, in the action while constructing the
Lagrangian, and sometimes it is found by direct observation or trial and error. However, it
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may be, that for some complicated Lagrangians the gauge symmetry cannot be seen directly.
An example of this type is referred to in [3]. So, in general, one needs a systematic method
to answer the above questions.

Since every gauge theory is related to a Hamiltonian constrained system [4], several
authors have tried to find the answer within the framework of a Hamilton—Dirac formulation
[5]. For example the famous Dirac conjecture, about the generators of GTs, has been much
discussed [6-8]. The necessary and sufficient conditions for a function in phase space to
be the generator of a GT is discussed in [1, 6]. In [2] it is proved that there exist some
appropriate chains of constraints that can be used to construct the most general form of the
generator of GTs. [3] gives an algorithm for obtaining a complete set of gauge symmetries,
using the framework of Hamiltonian formulation.

On the other hand little has been achieved in the Lagrangian formalism. As is well
known, for every gauge-invariant theory the Euler—Lagrange equations of motion cannot
be solved completely to determine all the accelerations [9]. In other words, undetermined
accelerations imply the appearance of arbitrary functions of time, which is the signature of
gauge theories.

It is the aim of this paper to propose a systematic method for deriving the explicit form
of the GTs from the Lagrangian equations of motion. In section 2, we propose a procedure
to find the greatest number of equations including accelerations for a singular Lagrangian
by means of differentiating the Lagrangian constraints. On the other hand a number of
identities among the Euler derivatives emerge. We show how in principle it is possible
to recognize and count different types of degrees of freedom; these are gauge, dynamical
and constraint ones. We do not make any special assumption about the Lagrangian, and
consider the most general feature of the problem.

In section 3, we show that for each of the above mentioned identities one can find
a transformation of the coordinates involving an arbitrary function of time which does
not change the action, i.e. a GT. Some remarks about the gauge-invariant field theories
and application of these methods are discussed in section 3. Section 4 is related to the
Schwinger model. The model is discussed in the framework of Hamiltonian constraint
systems in several texts [10-13]. Here we obtain the gauge symmetries of the ordinary and
axial Schwinger models by using our Lagrangian method and also discuss the equations of
motion of the generalized and chiral Schwinger models.

2. Dynamics of a singular Lagrangian

Consider a dynamical system with degrees of freedom, described by the Lagrangian
L(g,q). The equations of motion can be obtained by vanishing the Euler derivatives as
follows,

LIEW,qu—i-Ol,:O l=1,,k (2)
where the elements of Hessian matik and thex; are defined as
d%L
Wij = A a- (3)
0g;0q;
2L . AL
o= —0q; — —. 4)
99;94i 9g;

We assume summation over the repeated indices throughout this paper. For a singular
Lagrangian the determinant &f vanishes, and therefore the equations of motion (2) cannot
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be solved for all of the acceleratiogs. Suppose the rank dV is (k — A1), so there are
A1 null eigenvectors.“s for W such that

)\?IWU‘:O a1=1,...,A1. (5)
If we multiply both sides of equations (2) by* we obtain
yal(q’ q) = )\.;‘lLi = )“?10[1' = 0 a, = :I_7 ey Al- (6)

The functionsy“ are A; constraints of velocities and coordinates; but they are not
necessarily independent of each other. suppose the rank of equationsA@) lismeans
that one can, in principle, find, independent functiong® (g, ¢) such that their vanishing
is the necessary and sufficient condition for the vanishing“ef In other words,y“ are
weakly vanishing functions on the surfagé (¢, ¢) = 0.
So they® are independent linear combinations ypf: with coefficients which may
depend ory; andg;:
A1
ya(q,9) =) Cig. 9)r" (g, 4) ai=1.... A @
ar=1
On the other hand there an&l = A; — A, linear combinations ofy“ which vanish
identically:

Ay
> Cig. 9y q.9) =0  a=1.. AL ®)

a=1

Comparing (7) with (6) shows that using the null eigenvectors

— Al -
Mg, q) =Y CiNg. A" q.q) @ =1... A ©)
a1=1

the primary Lagrangian constraints can be written as,
y¥(q,q) = 1ML ar=1,..., A (10)
Similarly, comparing (8) with (6) shows that for the null eigenvectors

~

Ay
Mg, q) =) Cig.pr"(q.q)  a=1... A (11)
al=1

the following identities can be written between Euler derivatives:
AL, =0 a1=1,..., Ay (12)

It should, however, be noted that a set of independent Lagrangian constraints are not
necessarily independent functions of velocity. Here we consider only the so-called B-type
constraints (in the terminology of [9]), for simplicity. This means that the constraints are
independent functions of velocity. So we assume that the maix/dg; has the maximal
rank A;. The treatment of the most general case, where the A-type constraints are also
present, is given in the appendix.

In the next step using the consistency condition for the constraints with time, we add the
time derivatives of the primary constraints (10) to the equations of motion (2). Therefore
we havek + A; equations which contain acceleration as follows

leqj+al=0 i=1,...,k

dyal 31/&1 . 8)/&1 ) _ _ (13)
= i i — O == 1, ceey A .
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The added equations can be organized in such a manner that equations (13) read as
L} =Whgj+a =0 ih=1,....,k+ A1 (14)

where the flrslkL1 are the same ak; in equations (2) and the next; are dV l.

At this point we search for the left null eigenvectors of the rectangular mﬁ/tﬁxSince
dy®/dq; has the maximal rank, no null eigenvector with vanishing firét components
can be found. On the other hand if we adg zero components at the end of the previous
null eigenvectorsi® they are still null eigenvectors oWjJ However, there exist the
possibility of finding some more (left) null eigenvectors Wﬁi with some nonvanishing

elements in the las; components and also in the firstcomponents. We call themew
null eigenvectors and denote them k. They should be considered modula the previous
null eigenvectors\“t, since each new null eigenvector combined with the previous ones
also has the same properties.

Suppose there arg, (4, < A1) new null eigenvectora® such that

AZWE =0 a=1,..., A (15)

1
So, the rank of the set of equations (14) is,

(k— A + Ay — Ay,
Again, multiplying both sides of equations (14) h$?, one obtains
v%(q,q) = A?lle Aita, =0 a,=1,..., A, (16)

The new constraintsy“2(q, ¢) are independent of the previous constraimts(q, ¢), asi*
are calculated modula“:. However, as in the previous step, it is possible that they are
not independent functions of coordinates and velocity. Again one can in principlet$ind
independent functiong®(q, ¢) out of the y® as secondary Lagrangian constraints and
A, = A, — A, identities between the .

Suppose the null elgenvectoAtéZ(q, q) are found in a similar way to relation (11) in
the first step, such that the identities betweenltl,ﬁeread as,

)\?le;Ll =0 flz =1, ...,AA2. (17)

For future use, let us find the exact form of the identities (17). Using equations (13) and
(11) we have,

A, +)\Zid(;ﬂlL)— ar=1,...,A; (18)

where the summations are over the appropriate domains. This result can be written in the
form,
(&2 — ja2pany g, 4 [(x“?x“l)L ]1=0 dr=1,..., Ao (19)

ap”’i a1

Similarly using (10), the secondary Lagrangian constraints are also in the form

y®(q.¢) = O = A2 L; + [(xziki“)u] =0  a=1... A, (20)
Now the algorithm is clear. In the next step we should add the derivatiyé&¢f, ¢) to

the set of equations (14), construct a longer matrix for coefficients of accelerations, namely

Wél (i =1,...,k + A1 + A,) and search for someew null eigenvectors. We should

proceed in thls manner step by step. At each step some relations among dhe their

derivatives as in (19) and some new constraints as in (20) emerge.
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Consider, for example, theth step, where we begin with the followigr A1+ - -+ A,
equations for acceleration:

Wij'q'.]'%—()l,‘ZO i=1...k
dya _
Y _o a1=1..., A
dr
(21)
dy @ _
=0 a, =1,..., A,
dr a
These can be summarized as,
WG+, =0 =1 ..., k+ A1+ A,. (22)

In this step we have addet], equations for accelerations. It may happen that there appear
A, 41 new null eigenvectorsi®+t (modula the previous ones) fd¥", which have some
nonvanishing elements in the firstand the lastA, components. So the total rank of
equations (21) or (22) is,
(k — A1) + (A1 — Ap) + - + (A, — Ap). (23)
Multiplying both sides of (22) by\?n"“ leads toA,,1 (n + 1)ary Lagrangian constraints
y@+ plus An+1 new relations among the; and their derivatives as follows:
N R dyﬁl dyau
)\fln+1Li }\“fn+l . )\'Un+1
! e dt++"" dr

Insertingy“ in terms ofL; and their derivatives, as in the expressions in (20), and then
constructing total derivatives, (24) can be written as,

—0. (24)

; @(d’sih) =0. (25)

In this relation¢,; are some functions of the coordinates and their derivatives emerging
from A% with m < n andA%+1, like the expressions in (19).

It should be mentioned that for finding the vanishing combinations“of, for example
(8), one can use weakly vanishing ones. In this case, similar to the relations (11) and (12),
we find some null eigenvecton?é’"+1 for W" such that

ML, =Y Dy y” (26)
i<n
where D;, are some coefficients. The right-hand sides of (26) is a combination of previous
L;, with k < n. So a suitable combination of the new null eigenvegtor with the previous
ones would provide another null eigenvectsr+ for which the relatlonk'“"“L,” = 0 holds
strongly. We assume that all these calculations have been performed at each stage.
Fortunately the story does end, since as we observed, at each step one loses a number

of dynamical degrees of freedom. In other words, the total number of the null eigenvectors
during all steps cannot exceed the number of degrees of freedom. Suppaséhtseep
is the last one. There are two ways for this to happen. The first one is that no new null
eigenvector can be found fd¥". This means thatiy.; = 0. Therefore from (23) the
total rank of the equations (22) for accelerations is,

R=k—A;—Ay— - — Ay. (27)
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On the other hand there are a total number of
M=A1+ -+ Ay (28)

identities (25) among thé,.
Another way for the procedure to terminate, is that at At step no new constraint
emerges. This means that all the expresskj’ﬁslam vanish weakly (i.e. up to the previous

constraints). So we havay i = ANH and Ay,1 = 0. In this case the same as (27)
and (28) would be deduced from (23) but withreplaced byN + 1).

Summarizing the whole procedure, we see that by processing the Euler—-Lagrange
equations in a special manner, we finally obtain a total numbe inidependent equations
for accelerations which generally may be less than the total number of degrees of flieedom
On the other hand we can obtain soMerelations in the form of (25) among thle which
hold identically. As we will see in the next section each of these identities corresponds to a
GT of the system. Therefore the total number of degrees of freddmnthe sum of gauge
degrees of freedom and the number of independent equations for acceleraftons

One point to be mentioned parenthetically is that the set of Lagrangian constraints which
lead to GTs correspond to first-class Hamiltonian constraints, in the Dirac terminology. On
the other hand, the set of Lagrangian constraints which give relations to determine a number
of undetermined accelerations are related to second-class Hamiltonian constraints. However,
the exact inter-relationship is difficult to investigate, but some features can be found in [14].

It should also be noted that the number of dynamical degrees of freedom is still less
than R by the number

S=A1+A,+-+ Ay

which is the number of Lagrangian constraints. That is why, although we find some
equations including acceleration by differentiating the constraints, the constraint equations
by themselves put stronger restrictions on the dynamical variables. Roughly spegking,
degrees of freedom are either fixed in time or have constant velocities. The same restrictions
are also put on the initial values. The situation, however, is different from what is usually
implied by the conservation laws. In the latter case some functions of coordinates and
velocities do not change with time, but their value can be everything, depending on the
initial conditions which can be chosen arbitrarily.

3. Gauge transformations

Let us concentrate on relation (25) and see its consequences. If there exists a set of functions
¢si(g, ¢) such that the relation

n ds
— (¢..L:) = 2
; gy @l =0 (29)
holds identically among thé&;, then the action is invariant under the transformation,
n dsf
8q; = ) 30
q ;( Vg ® (30)

Here f(¢) is some infinitesimal arbitrary function of time with the only restriction that its
first n derivatives (includingf itself) vanish at the endpoints.
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Let us now evaluate the variation of the Lagrangian under the transformation (30):

SL=—L;§ +d 8L5
= i0qi dr \ 3¢, qi

n

;_Z( 1)S Xf(pw z

Flf d

des—1 dr

IIZ

—goiLi f — Z( p-id

— (i Li)

12

SH SR
S:O dl"s St 1
:0

where the symboE means equality up to a total time derivative, and in the final line we
have used (29). Therefore the variation of action is a combination of derivativgé& pat
the endpoints, which vanish by assumption. This means that the transformation (30) is really
a GT. The above result is valid for any arbitrary trajectgryr) and not necessarily for
those who satisfy the equations of motion. The reason is that all the algebraic manipulations
of the previous section are some operation onZthewithout considering.; = O.

In general, there may exist several relations similar to (29), to be distinguished with the
(discrete or continuous) indaex

ny

Zdv¢(?)Li)=0 a=1...,M. (31)

The corresponding GTs are specified by infinitesimal arbitrary functions of fif. So
an arbitrary GT has the form,

ng d a ’
8q; = Z Z( L f @) (32)
a=1 s=
It seems useful to add some remarks about the generalization of the results to the field
theory. Suppose some dynamical system is described by a set ofd{iétds) and a local
Lagrangian:

= [ @ Le . b D ) (33)

The equations of motion are

L[(x,t)=/dy Wii(x, )G (y, 1) + a;(x, t) i=1...,N (34)
where N is the number of fields,

2

ai(x, 1) = /dy m%(%ﬂ - Sqiii, 5 (35)
and

R g 36)

8qi(x,1)8q;(y, 1)
All the derivatives of the Lagrangian are functional derivatives, which for the second
derivatives normally lead to expressions including Dirac delta functions and their derivatives.
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The Hessian matrix can be viewed as an operator vaNied N matrix multiplied by
8(x—y). We consider those singular Lagrangians whose singularity is in the discrete part of
the Hessian matrix. The null eigenspace of the Hessian matrix can be spanned by the basis
vectorsif(x) = A“8(z — x) wherer® is some null eigenvector of the discrete part of the
Hessian matrix. Multiplication of the equations of motion witt(x) yields the primary
Lagrangian constraint:

Y40 = fdx A8z —x)Li(x, 1) = A" Li(z, 1) = A{*ei(z, ).

If A21(x) contains derivatives of a delta function it means that one can eliminate acceleration
by combining theL; (x, ) and their spatial derivatives.

The process goes on in the same manner as the previous section. If the system possesses
gauge symmetry, one can find relations similar to (29), as follows:

> [t L) =0 37)
rd ats

Here the spatial variableand the discrete index has a role similar to the indexin (31).
The GT (32) also takes the form,

8qi(x, t)-ZZ( 1)?/01 z f“(z Ffel&D) oy, 1y (38)
a=1 s=|

wherem is the number of arbitrary fieldg, (z, t). Spatial integration in (38) will be removed

by delta functions inp. So the GT of the fieldg;(x) will ultimately include spatial and

temporal derivatives of the arbitrary fields(z, 1).

Sometimes it is easier to find a relation between spatial and temporal derivatives of the
L;(x, t) by direct observation of the equations of motion. If this is the case, it is not difficult
to rewrite it in the form of (37) with the use of a Dirac delta function and its derivatives,
and then read out the’ (z, x) from it directly.

We complete this section by considering a simple example to show how the method
works in determining the gauge symmetries of a given system.

Consider the Lagrangian

L = q1(g2 + q3) + 4243 — q3q4 — V(q) (39)
where
V(g) = 344 + 3q4(q2 + q3). (40)
The equations of motion can be written as
Li =W +a; =0 i=1....4 (41)
where
01 10
1 010
"=1110 0 (42)
0 00O
and
0
1
@ = 2 . 43)
—44+ 5494

43+ 3(q2+ g3+ qa)



Lagrangian formulation and Schwinger models 2755

The Hessian matrixW has the null eigenvectora® = (0,0,0,1). Multiplying the
equations (41) from the left by* gives the primary Lagrangian constraint
yr=ALi = g3+ 3(q2+ g3 + qa) (44)

which is the same abk,. AddingLs = %yl(q, q) to the previoud.;, the resulting equations
in this step are,

L, =W.g+af =0 (45)
where
0110
101 0
wi=|1 1 0 0 (46)
000 O
0010
and
0
%614
ot = —Ga+ 394 . (47)

g3+ 2(q2+ g3+ q4)
$(G2 + 43+ Ga)
BesidesA! with one more zero componen?! also has the new null eigenvector
A% = (1,1,-1,0,—2). Again multiplication by A?> gives the secondary Lagrangian
constraint:

y?=22Ly = —42 — ga. (48)
Adding Le = dy?/dt = 0 to the previous equations gives
Li, =W +a2=0 (49)
where
0 1 1
1 0 1 0
2 1 1 0 O
we= 0O 0 0 O (50)
0O 0 1 O
0 -1 -1 0
and
0
%414
-4 1
o2 = qa+ 594 . (51)

d3+ 3(q2+ g3+ q4)
(G2 + g3+ Ga)
0
At this step there exists the new null eigenveadtde= (1, 0, 0, 0, 0, 1) for W2. However,

multiplying the equations (49) by® does not give any new constraint, since the relation
AiL,-z = 0 holds identically. Although we did not succeed in increasing the rank of
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equations for acceleration, we found a relation between’thevhich holds without using
the equations of motion:

ML, =Li+Lg=0. (52)
Remembering the definitions @fs and Ls, (52) is equivalent to

o? d

— (2L —(L L,—L L,=0 53

dtz( 4)+dt( 1+Lo—L3)+ L1 (53)

which is in the appropriate form of relation (29). In this problem it is also possible, but
difficult, to find (53) by direct inspection of the equations of motion. This shows that in
the generic case one cannot rely on thal and error method.

Finally we can find the GT of the system, by using (30), as follows.

dSqi=f—f
Sqa=f

. 54
Sqgz3=—f &9
8(,]4 = 2f

The variation of the Lagrangian under the transformation (54) is

d .
8L = E[—f(qz +q3)]

which shows the gauge invariance of the action.

4. Schwinger model

The generalized Schwinger model in the bosonized version is described [10] by the
Lagrangian:

L= / de [—2Fu F™ + 20,00"¢ + (e4€™ — e_g")d,¢pA, + ae*A,A"] (55)

wheree, ande_ are related to the coupling constants of the right and left mover fermions
with the gauge field4,, and

e’ = %(ei +€2). (56)
The undefined parametes arises in the process of bosonization [11, 10]. The
Lagrangian (55) reduces to the Lagrangian of an ordinary Schwinger model by choosing
e = 0 anda = 0, and to the axial Schwinger model by choosing= 0 anda = 2,
both models possessing gauge invariance. &goe —e_ one obtains the chiral Schwinger
model. Generalized and chiral Schwinger models are not gauge invariant for any choice
of a.

The Lagrangian (55) can also be written explicitly in the form

L= / dr [2(@? — ¢°) + S(A2+ A5 — 2414°0) + e (Aod’ — A1)

—e_(Aop — A19)) + 3ae’(A5 — AD] (57)
where dot and prime mean differentiation with respect to time and space respectively.
The equations of motion can be written as:
Ly=¢—e A1 —e Ag—¢" +e Agt+e A =0
Lay=Ay— Al —e ¢’ +e ¢ —ae’Ag=0 (58)

Ly =A)—Ay+e,p—e ¢ +ae’Ay=0.
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The second equation does not include any acceleration and is a constraint. This can be
better seen by observing the singularity of Hessian matrix:

1 00
W= <0 0 O)S(x—y) (59)
0 01

where the discrete indices run over the fieltls Aq and A; respectively. The Hessian
matrix (59) has the null eigenvectat = (0, 1, 0)g(z), with arbitrary g(z), but as a basis
of the null eigenspace we can choose

21(z) = (0,1,008(z — x). (60)

Multiplying the equations of motion (58) from the left witt(z) and using (34) one obtains
the Lagrangian constraint

yiz. 1 = /dx5(z — X)L ag(x, 1) = Ly, (z, 1). (61)

Then we can introducé(x, t) = %yl(x, t) and add it to equations (58). Using (34)
and the field-theoretic counterpart of (14) the result can be shown as

1 0 O
0 0 O

wl= o o 1 |%«-» (62)
e O 0

T ax
and
—€+A1 — e_Ao — ¢” + €+A/0 +e_ A4
1 Ag — A’l —e ) +e ¢ —aelAg
—AE) + el - e_¢' + qezAl
Al —erd’ —ae®Ag

(63)

a3
’ ox

The matrix W' has the new null eigenvectgre_, 0
g(x), but the null eigenspace can be spanned by

22(2) = (—e_, 0, 2, 1)8(z — x). (64)

? ox

, Dg(x) with arbitrary function

Multiplying by (63) gives
v3(z, 1) =[dxk,-21Li1(x,t)

= /dxkiail(x, 1)
= (ae?® — e?)(A'1 — Ag) + ese_(A1 — Ap). (65)

This is a secondary Lagrangian constraint. Putting (64) in the first line of the above relations
and recalling that4 = 2 L, we see that

y2(e, 1) = —e_Ly(x, 1) + £ La,(x, 1) + L Lo (x, 1) (66)

For the chiral and generalized Schwinger model we should go one step further, and add
the time derivative of (65) to the previous equations. Finally we have five equations for
acceleration but their rank is three. That is enough to solve them for the dynamics of one
of the fields, sayp, because we can then use two constraints (61) and (65) in order to find
the evolutions of the other two fields. The chiral and generalized Schwinger models possess
only one dynamical field and the other two fields have no dynamics.
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For the ordinary and axial Schwinger models the situation is completely different. In
these two cases it is easy to see that the final expression (65) vanishes, which means gauge
invariance of the models. For the ordinary Schwinger model (66) reduces to

0 d
aLAl(X,l‘)-FELAO(xJ):O (67)

which by using (65), (64) and (60) (or by direct observation) can be written as,

9 9
/dZ |:—8—Z§(Z - )C)j| LAl(Zs )+ E[/dz 3z — X)LAO(Z7 t):| =0. (68)
In this form (68) is exactly similar to (37) with the identifications,
$1.2(z, x) = 68(z — x)
9 (69)
$0:3(z, x) = —8—5(2 —X)
z

and the remaining,; (z, x) as zero. Now using (38), the GT of the fields are as follows:
8¢ =0

9 0]
540 = — / b o f (@08 =) = == f(x.0) (70)

d d
A1 = /dz f(z, 1) (——8(2 —x)) = —f(x,1)
0z ax
which can be written in the covariant form ds, — A, — 0, f and¢ — ¢.
For the axial Schwinger model, (66) with the use of (60) and (64) can be written as,
ad d
/dz [—a—zs(z —x) Lay(z.1) —e_8(z —x)Lg(z, t)] + 5[/‘ dz 8(z — x) L ag (2, f)} =0
(71)
comparing with (38) gives the nonvanishigg (z, x) as follows:
$12(z,x) =68(z — x)
$01(z,x) = —e_8(z — x) (72)
ad
$o3=——38(z —x).
0z
The resulting GT in this case is
Sp=—e_f(x,1)

0
§Ap = —Ef(x,l‘) (73)

0
8A1 = — f(x,1).
0x

The transformations (70) and (73) are the well known GTs of the corresponding models.

As can be seen, while the ordinary and axial Schwinger models are gauge invariant,
the chiral and generalized Schwinger models, as they stand can by no means possess gauge
symmetry. However, it is not possible to bring back, or put in by hand, the gauge symmetry
(as is sometimes claimed [12]) in a model which essentially lacks it. Nevertheless it is
possible to construct dynamically equivalent models of which some are gauge invariant and
some are not.
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Appendix. A-type constraints

A set of independent functions of velocity and coordinates are not necessarily independent
constraints. That is why, one may eliminate velocities and find a number of constraints
between coordinates only. These are recognized as A-type constraints in the terminology
of [9]. Time derivatives of A-type constraints may have vanishing combinations with the
remaining B-type constraints.

For example, the constraings = ¢1+¢3, y2 = g1—q2 andys = ¢2+4g3 are independent
functions of coordinates and velocities, but in fact they are equivalent to the two constraints
¥, = y1 andy; = y1 — y», and the identityys = %(7/1 — Y2).

Any set of N constraintsy, (¢, ¢) are, in principle, equivalent t&/, A-type constraints
vn,(q), Ng B-type constrainty,, (¢, ¢) and a set ofV identities containing first-order time
derivatives of constraints. After some algebraic manipulations the evolving A-type and
B-type constraints should satisfy the following conditions.

(1) A-type constraints should have maximal rank, i.e.

rank<%) = Ny. (74)
9q;

(2) B-type constraints should b€z independent functions of velocities, such that
dYn

rank(L) = Np. (75)
9g;

(3) As functions of velocities, time derivatives of A-type constraints should be

independent of B-type ones. Sing‘qb (dfj’;/‘) = 3;{;{* , this condition can be written as,

ng.
0qi

Applying the above procedure to the set of constraints(g, ¢), we see that two
changes are necessary in thth step of section 2. First, a number of additional identities
among theL; should be considered since, as is mentioned in the textythere some
combinations of the.;. Then the same number should be subtracted from the number of
constraints. Second, in order to write new equations for accelerations, one should consider
first derivatives of B-type and second derivatives of A-type constraints. Condition (76)
then ensures that the added equations for acceleration are independent of each other. So
the process goes on with no change except that a recombination of constraints should be
carried out.

Ay
rank( Oa: ) = N, + Nj. (76)
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